
TRUST
as the #1

ENEMY
of

SECURITY

by

Joanna Rutkowska

Invisible Things Lab

Next Generation Threats, Stockholm/Goteborg, Sweden, September 22 -23, 2015

Topics for today

ÅDefinitions: òTrustó, òTrustedó, òTrustworthyó, òSecureó, TCB?

ÅTCB of a desktop OS (Windows, OSX, Linux)

ÅTCB of an x86 laptop

ÅTCB minimalization vs. TCB auditing & hardening

ÅCompartmentalization, Isolation vs. Integration

Trust

Trusted

Secure

Trustworthy

Can ruin the whole systemõs security!
(this is by definition)

Resistant to attacks,
but might be malicious!
(e.g. well written backdoor)

Resistant to attacks and also ògood ó

(whatever that really means!)

R

U

S

T

E

D

O

M

P

U

T

I

N

G

A

S

E

(Big) TCBs

we donõt

like!

Letõs take a look at how (too big) TCB can ruin Security, Trustworthinessé.

Example #1 : a typical modern desktop OSé

Storage &
Filesystems

Apps

Device drivers

Networking
stacks

Graphics
services

Isolation &

policy

enforcement

Apps Apps Apps Apps

USB NICs GPU

Other

device

s

Other
services

TCB

Exploit required

No exploit required

Oops

é

The kernel & other trusted components

Typical problematic scenarios

ÅPlugging a storage medium (e.g. USB) with malformed partition or filesystem

Å Exploiting a bug in filesystem parsing code in kernel, Game Over.

ÅOpening a PDF with smartly crafted structure

ÅGetting the graphics rendering engine in the kernel exploited, Game Over.

ÅBrowsing a website which causes the browser to get exploited

Å Escalating to kernel through exploiting the rich usermode -> kernel interface,
Game Over.

ÅConnecting to untrusted hotspot

Å Exploiting a bug in the the 802.11 stack, Game Over.

If only the TCB werenõt so huge, complex, and

involved in so much untrusted input

processingé

Example #2 : a typical modern x86 laptopé

MCH/chipse

t

CPU

Ethernet NIC

WiFi NIC USB devices

ME f/w f/w

f/w f/w

BIOS, ACM, FSP f/w

EC
f/w

SATA

GPU

f/w

f/w

Audio
f/w

All these are assumed to be your TCB!

Oops

é

But the actual PITAs areé

MCH/chipse

t

CPU

Ethernet NIC

WiFi NIC USB devices

ME f/w f/w

f/w f/w

BIOS, ACM, FSP f/w

EC
f/w

SATA

GPU

f/w

f/w

Audio
f/w

MCH/chipse

t

CPU

ME f/w

BIOS, ACM, FSP f/w

Get to know some blobs:

ÅIntelõs Management Engine (ME)

ÅIntelõs Authenticated Code Modules (ACM)

ÅIntelõs Firmware Support Package (FSP)

ÅOEMõs BIOS (includes SMM)

All these have

unlimited power

over the platform!

BTW, if you think using CoreBoot (open source BIOS)

you can get rid of these blobs, then youõre wrong!

Anyway, letõs assume we trust the Intel blobs (ME, FSP, ACM)

Letõs take a look at x86 boot security nowé

Boot Security: the concept is simpleé

CPU

BIOS

OS

Boot Security: BIOS as WEAK element in the chain

CPU

OS

Devices

BIOS

Boot Security: Intel TXT to the rescue!

CPU

Devices

tboot

MLE/OS

SENTER
Intel TXT

Securely loaded hypervisor/kernel

BIOS

Buté TXT vulnerable to malicious SMM

CPU

BIOS

Devices

tboot

MLE/OS

SENTER

SMM

STM to the rescue!

CPU

BIOS

Devices

tboot

MLE/OS

SENTER

SMM STM

Heh ;) 1 1 Actually not a joke!

Problems with STM

ÅOEM-provided (although hash reliably measured during SENTER)

ÅSTM resource exception list

ÅFew (no) STMs out there (despite our attack published in 2009!)

Problems with TXT

ÅProblems with SMM still not properly resolved (see the previous slide)

ÅWe (ITL) have presented two more lethal attacks against Intel TXT (SMM -

unrelated)

ÅTXT seems to be just too tricky a technology to be done right

